664 research outputs found

    Extended Palatini action for general relativity and the natural emergence of the cosmological constant

    Full text link
    In the Palatini action of general relativity the connection and the metric are treated as independent dynamical variables. Instead of assuming a relation between these quantities, the desired relation between them is derived through the Euler-Lagrange equations of the Palatini action. In this manuscript we construct an extended Palatini action, where we do not assume any a priori relationship between the connection, the covariant metric tensor, and the contravariant metric tensor. Instead we treat these three quantities as independent dynamical variables. We show that this action reproduces the standard Einstein field equations depending on a single metric tensor. We further show that in this formulation the cosmological constant has an additional theoretical significance. Normally the cosmological constant is added to the Einstein field equations for the purpose of having general relativity be consistent with cosmological observations. In the formulation presented here, the nonvanishing cosmological constant also ensures the self-consistency of the theory.Comment: in the revised version the original scalar matter action is replaced with a general matter actio

    Scalars, Vectors and Tensors from Metric-Affine Gravity

    Get PDF
    The metric-affine gravity provides a useful framework for analyzing gravitational dynamics since it treats metric tensor and affine connection as fundamentally independent variables. In this work, we show that, a metric-affine gravity theory composed of the invariants formed from non-metricity, torsion and curvature tensors can be decomposed into a theory of scalar, vector and tensor fields. These fields are natural candidates for the ones needed by various cosmological and other phenomena. Indeed, we show that the model accommodates TeVeS gravity (relativistic modified gravity theory), vector inflation, and aether-like models. Detailed analyses of these and other phenomena can lead to a standard metric-affine gravity model encoding scalars, vectors and tensors.Comment: 13 p

    The reality conditions for the new canonical variables of General Relativity

    Get PDF
    We examine the constraints and the reality conditions that have to be imposed in the canonical theory of 4--d gravity formulated in terms of Ashtekar variables. We find that the polynomial reality conditions are consistent with the constraints, and make the theory equivalent to Einstein's, as long as the inverse metric is not degenerate; when it is degenerate, reality conditions cannot be consistently imposed in general, and the theory describes complex general relativity.Comment: 11

    Evidence for a gene influencing heart rate on chromosome 5p13-14 in a meta-analysis of genome-wide scans from the NHLBI Family Blood Pressure Program

    Get PDF
    BACKGROUND: Elevated resting heart rate has been shown in multiple studies to be a strong predictor of cardiovascular disease. Previous family studies have shown a significant heritable component to heart rate with several groups conducting genomic linkage scans to identify quantitative trait loci. METHODS: We performed a genome-wide linkage scan to identify quantitative trait loci influencing resting heart rate among 3,282 Caucasians and 3,989 African-Americans in three independent networks comprising the Family Blood Pressure Program (FBPP) using 368 microsatellite markers. Mean heart rate measurements were used in a regression model including covariates for age, body mass index, pack-years, currently drinking alcohol (yes/no), hypertension status and medication usage to create a standardized residual for each gender/ethnic group within each study network. This residual was used in a nonparametric variance component model to generate a LOD score and a corresponding P value for each ethnic group within each study network. P values from each ethnic group and study network were merged using an adjusted Fisher's combining P values method and the resulting P values were converted to LOD scores. The entire analysis was redone after individuals currently taking beta-blocker medication were removed. RESULTS: We identified significant evidence of linkage (LOD = 4.62) to chromosome 10 near 142.78 cM in the Caucasian group of HyperGEN. Between race and network groups we identified a LOD score of 1.86 on chromosome 5 (between 39.99 and 45.34 cM) in African-Americans in the GENOA network and the same region produced a LOD score of 1.12 among Caucasians within a different network (HyperGEN). Combining all network and race groups we identified a LOD score of 1.92 (P = 0.0013) on chromosome 5p13-14. We assessed heterogeneity for this locus between networks and ethnic groups and found significant evidence for low heterogeneity (P ≤ 0.05). CONCLUSION: We found replication (LOD > 1) between ethnic groups and between study networks with low heterogeneity on chromosome 5p13-14 suggesting that a gene in this region influences resting heart rate

    Universal field equations for metric-affine theories of gravity

    Get PDF
    We show that almost all metric--affine theories of gravity yield Einstein equations with a non--null cosmological constant Λ\Lambda. Under certain circumstances and for any dimension, it is also possible to incorporate a Weyl vector field WμW_\mu and therefore the presence of an anisotropy. The viability of these field equations is discussed in view of recent astrophysical observations.Comment: 13 pages. This is a copy of the published paper. We are posting it here because of the increasing interest in f(R) theories of gravit

    Algebraic analysis of a model of two-dimensional gravity

    Full text link
    An algebraic analysis of the Hamiltonian formulation of the model two-dimensional gravity is performed. The crucial fact is an exact coincidence of the Poisson brackets algebra of the secondary constraints of this Hamiltonian formulation with the SO(2,1)-algebra. The eigenvectors of the canonical Hamiltonian HcH_{c} are obtained and explicitly written in closed form.Comment: 21 pages, to appear in General Relativity and Gravitatio

    Validation protocols for blood pressure measuring devices: the impact of the European Society of Hypertension International Protocol and the development of a Universal Standard

    Get PDF
    In the last three decades protocols for the validation of blood pressure measuring devices have been developed by the US Association for the Advancement of Medical Instrumentation, the British Hypertension Society, the German Hypertension League, the European Society of Hypertension Working Group on blood pressure Monitoring and the International Organization for Standardization. The European Society of Hypertension International Protocol required much smaller sample size than the other protocols, aiming to reduce the time, resources and cost of validation studies and thereby increase the number of validated devices. Given its specifications, the European Society of Hypertension International Protocol was adequate for ‘high- and low-accuracy’ devices, yet assessment of ‘moderate accuracy’ devices had high uncertainty with resultant high rate of device failure. Thus, devices validated using the European Society of Hypertension International Protocol should be considered to be as accurate as those validated with the previous Association for the Advancement of Medical Instrumentation or British Hypertension Society protocols. However, the European Society of Hypertension International Protocol did not allow subgroup evaluation (arm sizes, special populations, etc). The mission of the European Society of Hypertension International Protocol to promote the concept of validation has been well achieved, as almost double studies have been published using it than all the other protocols together. However, the maintenance of different validation protocols is confusing and therefore experts from the Association for the Advancement of Medical Instrumentation, European Society of Hypertension International Protocol and International Organization for Standardization have now developed the AAMI/ESH/ISO Universal Standard (ISO 81060-2:2018) as the recommended 21st-century procedure for worldwide application. The European Society of Hypertension Working Group has published a practical guide for using the Universal Standard. It is in the interests of all scientific bodies to propagate the Universal Standard and ensure its wide implementation

    The Hamiltonian of Einstein affine-metric formulation of General Relativity

    Full text link
    It is shown that the Hamiltonian of the Einstein affine-metric (first order) formulation of General Relativity (GR) leads to a constraint structure that allows the restoration of its unique gauge invariance, four-diffeomorphism, without the need of any field dependent redefinition of gauge parameters as is the case for the second order formulation. In the second order formulation of ADM gravity the need for such a redefinition is the result of the non-canonical change of variables [arXiv: 0809.0097]. For the first order formulation, the necessity of such a redefinition "to correspond to diffeomorphism invariance" (reported by Ghalati [arXiv: 0901.3344]) is just an artifact of using the Henneaux-Teitelboim-Zanelli ansatz [Nucl. Phys. B 332 (1990) 169], which is sensitive to the choice of linear combination of tertiary constraints. This ansatz cannot be used as an algorithm for finding a gauge invariance, which is a unique property of a physical system, and it should not be affected by different choices of linear combinations of non-primary first class constraints. The algorithm of Castellani [Ann. Phys. 143 (1982) 357] is free from such a deficiency and it leads directly to four-diffeomorphism invariance for first, as well as for second order Hamiltonian formulations of GR. The distinct role of primary first class constraints, the effect of considering different linear combinations of constraints, the canonical transformations of phase-space variables, and their interplay are discussed in some detail for Hamiltonians of the second and first order formulations of metric GR. The first order formulation of Einstein-Cartan theory, which is the classical background of Loop Quantum Gravity, is also discussed.Comment: 74 page

    Gravitation, electromagnetism and cosmological constant in purely affine gravity

    Full text link
    The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, that has the form of the Maxwell Lagrangian with the metric tensor replaced by the symmetrized Ricci tensor, is dynamically equivalent to the metric Einstein-Maxwell Lagrangian, except the zero-field limit, for which the metric tensor is not well-defined. This feature indicates that, for the Ferraris-Kijowski model to be physical, there must exist a background field that depends on the Ricci tensor. The simplest possibility, supported by recent astronomical observations, is the cosmological constant, generated in the purely affine formulation of gravity by the Eddington Lagrangian. In this paper we combine the electromagnetic field and the cosmological constant in the purely affine formulation. We show that the sum of the two affine (Eddington and Ferraris-Kijowski) Lagrangians is dynamically inequivalent to the sum of the analogous (Λ\LambdaCDM and Einstein-Maxwell) Lagrangians in the metric-affine/metric formulation. We also show that such a construction is valid, like the affine Einstein-Born-Infeld formulation, only for weak electromagnetic fields, on the order of the magnetic field in outer space of the Solar System. Therefore the purely affine formulation that combines gravity, electromagnetism and cosmological constant cannot be a simple sum of affine terms corresponding separately to these fields. A quite complicated form of the affine equivalent of the metric Einstein-Maxwell-Λ\Lambda Lagrangian suggests that Nature can be described by a simpler affine Lagrangian, leading to modifications of the Einstein-Maxwell-Λ\LambdaCDM theory for electromagnetic fields that contribute to the spacetime curvature on the same order as the cosmological constant.Comment: 17 pages, extended and combined with gr-qc/0612193; published versio

    Blood pressure control and treatment adherence in hypertensive patients with metabolic syndrome: protocol of a randomized controlled study based on home blood pressure telemonitoring vs. conventional management and assessment of psychological determinants of adherence (TELEBPMET Study).

    Get PDF
    BACKGROUND: Inadequate blood pressure control and poor adherence to treatment remain among the major limitations in the management of hypertensive patients, particularly of those at high risk of cardiovascular events. Preliminary evidence suggests that home blood pressure telemonitoring (HBPT) might help increasing the chance of achieving blood pressure targets and improve patient's therapeutic adherence. However, all these potential advantages of HBPT have not yet been fully investigated. METHODS/DESIGN: The purpose of this open label, parallel group, randomized, controlled study is to assess whether, in patients with high cardiovascular risk (treated or untreated essential arterial hypertension--both in the office and in ambulatory conditions over 24 h--and metabolic syndrome), long-term (48 weeks) blood pressure control is more effective when based on HBPT and on the feedback to patients by their doctor between visits, or when based exclusively on blood pressure determination during quarterly office visits (conventional management (CM)). A total of 252 patients will be enrolled and randomized to usual care (n = 84) or HBPT (n = 168). The primary study endpoint will be the rate of subjects achieving normal daytime ambulatory blood pressure targets (< 135/85 mmHg) 24 weeks and 48 weeks after randomization. In addition, the study will assess the psychological determinants of adherence and persistence to drug therapy, through specific psychological tests administered during the course of the study. Other secondary study endpoints will be related to the impact of HBPT on additional clinical and economic outcomes (number of additional medical visits, direct costs of patient management, number of antihypertensive drugs prescribed, level of cardiovascular risk, degree of target organ damage and rate of cardiovascular events, regression of the metabolic syndrome). DISCUSSION: The TELEBPMET Study will show whether HBPT is effective in improving blood pressure control and related medical and economic outcomes in hypertensive patients with metabolic syndrome. It will also provide a comprehensive understanding of the psychological determinants of medication adherence and blood pressure control of these patients
    corecore